Numsy im Vergleich zu Quick Linear Regression Nutzung und Statistiken

Practice the conversion between binary, hexadecimal, and decimal numbers. If you work with computers, you may want to be able to convert these numbers in your head—whether for IP addresses, color codes, or other uses. This app can help you achieve that goal.
  • Apple App Store
  • Kostenlos
  • Bildung

Rang speichern

- -

In statistics, linear regression is a technique for estimating the relationship between an independent variable, X, and its scalar result, the dependent variable, Y, derived from a series of X-Y relationships. The computational routine involves trying to fit a straight line between a scatter plot of X-Y coordinates such that the sum of the squared differences between each dependent outcome, Yi, and the line computed at each Xi is minimized. This is the so-called "ordinary least squares (OLS)" estimator. R-squared, often called the "coefficient of determination," expresses the "goodness of fit" of the line to the scatter plot. It ranges from 0, no fit whatever, to 1, which is a perfect relationship where all the points in the plot fit along the straight line. The iPad version allows you to add, retrieve, reorder, or delete data sets. It also permits emailing, text messaging, and printing of a PDF report. Also, changing the form of the regression equation from Y = function(X) to X = function(Y) is allowed along with estimation of the dependent variable amount from a user-specified independent variable amount.
  • Apple App Store
  • Bezahlt
  • Bildung

Rang speichern

- -

Numsyvs. Quick Linear Regression Ranking-Vergleich

Vergleichen Sie Numsy den Ranking-Trend der letzten 28 Tage mit Quick Linear Regression

Rang

Keine Daten verfügbar

Numsy im Vergleich zu Quick Linear Regression Ranking im Ländervergleich

Vergleichen Sie Numsy den Ranking-Trend der letzten 28 Tage mit Quick Linear Regression

Keine Daten zum Anzeigen

Stellen Sie mit unserer kostenlosen Testversion Vergleiche mit jeder Website an

Los geht's
Numsy VS.
Quick Linear Regression

Januar 1, 2025